EntityRecognizer
Abstract Base class for recognizing entities in a batch of text.
Used in the recon.insights
module for understanding the kinds
of examples your model is having the most trouble with.
Source code in recon/recognizer.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
labels: List[str]
property
¶
Return List of String Labels
Raises:
Type | Description |
---|---|
NotImplementedError
|
Not Implemented, override |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of labels the model can predict |
evaluate(data, verbose=True)
¶
Evaluate recognizer performance on dataset and print metrics
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
List[Example]
|
Examples to evaluate on |
required |
verbose |
bool
|
Print results or not. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
Scorer |
Scores
|
spaCy scorer object |
Source code in recon/recognizer.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
predict(texts)
¶
Run model inference on a batch of raw texts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts |
Iterable[str]
|
Raw text examples |
required |
Raises:
Type | Description |
---|---|
NotImplementedError
|
Not implemented, override |
Returns:
Type | Description |
---|---|
Iterator[Example]
|
Iterator[Example]: Iterator of Examples |
Source code in recon/recognizer.py
31 32 33 34 35 36 37 38 39 40 41 42 43 |
|