Insights
get_annotation_labels(examples, case_sensitive=False)
¶
Constructs a map of each annotation in the list of examples to each label that annotation has and references all examples associated with that label.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
examples |
List[Example]
|
Input examples |
required |
case_sensitive |
bool
|
Consider case of text for each annotation |
False
|
Returns:
Type | Description |
---|---|
Dict[str, Dict[str, list]]
|
Dict[str, Dict[str, list]]: Annotation map |
Source code in recon/insights.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
|
get_ents_by_label(data, case_sensitive=False)
¶
Get a dictionary of unique text spans by label for your data
We want to return a dictionary that maps labels to AnnotationCount objects where each AnnotationCount contains the text of the annotation text, the total number of times it's mentioned (e.g. what entity_coverage does) but also the examples it is in.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
List[Example]
|
List of examples |
required |
case_sensitive |
bool
|
Consider case of text for each annotation |
False
|
Returns:
Type | Description |
---|---|
DefaultDict[str, DefaultDict[str, Set[Example]]]
|
DefaultDict[str, DefaultDict[str, Set[Example]]]: DefaultDict mapping |
DefaultDict[str, DefaultDict[str, Set[Example]]]
|
label to sorted list of the unique spans annotated for that label. |
Source code in recon/insights.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
get_hardest_examples(recognizer, examples, score_count=True, normalize_scores=True)
¶
Get hardest examples for a recognizer to predict on and sort by difficulty with the goal of quickly identifying the biggest holes in a model / annotated data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
recognizer |
EntityRecognizer
|
EntityRecognizer to test predictions for |
required |
examples |
List[Example]
|
Set of input examples |
required |
score_count |
bool
|
Adjust score by total number of errors |
True
|
normalize_scores |
bool
|
Scale scores to range [0, 1] adjusted by total number of errors |
True
|
Returns:
Type | Description |
---|---|
List[ExampleDiff]
|
List[HardestExample]: HardestExamples sorted by difficulty (hardest first) |
Source code in recon/insights.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
|
get_label_disparities(data, label1, label2, case_sensitive=False)
¶
Identify annotated spans that have different labels in different examples
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
List[Example]
|
Input List of examples |
required |
label1 |
str
|
First label to compare |
required |
label2 |
str
|
Second label to compare |
required |
case_sensitive |
bool
|
Consider case of text for each annotation |
False
|
Returns:
Type | Description |
---|---|
Dict[str, List[Example]]
|
Dict[str, List[Example]]: Set of all unique text spans that overlap between label1 and label2 |
Source code in recon/insights.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
top_label_disparities(data, case_sensitive=False, dedupe=False)
¶
Identify annotated spans that have different labels in different examples for all label pairs in data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
List[Example]
|
Input List of examples |
required |
case_sensitive |
bool
|
Consider case of text for each annotation |
False
|
dedupe |
bool
|
Whether to deduplicate for table view vs confusion matrix. False by default for easy confusion matrix display. |
False
|
Returns:
Type | Description |
---|---|
List[LabelDisparity]
|
List[LabelDisparity]: List of LabelDisparity objects for each label pair combination sorted by the number of disparities between them. |
Source code in recon/insights.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
top_prediction_errors(recognizer, data, labels=[], exclude_fp=False, exclude_fn=False, verbose=False, return_examples=False)
¶
Get a sorted list of examples your model is worst at predicting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
recognizer |
EntityRecognizer
|
An instance of EntityRecognizer |
required |
data |
List[Example]
|
List of annotated Examples |
required |
labels |
List[str]
|
List of labels to get errors for.
Defaults to the labels property of |
[]
|
exclude_fp |
bool
|
Flag to exclude False Positive errors. |
False
|
exclude_fn |
bool
|
Flag to exclude False Negative errors. |
False
|
verbose |
bool
|
Show verbose output. |
False
|
return_examples |
bool
|
Return Examples that contain the entity label annotation. |
False
|
Returns:
Type | Description |
---|---|
List[PredictionError]
|
List[PredictionError]: List of Prediction Errors your model is making, sorted by the spans your model has the most trouble with. |
Source code in recon/insights.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|